Implementasi Metode Ekstraksi Fitur Gabor Filter dan Probablity Neural Network (PNN) untuk Identifikasi Kain Tapis Lampung

ADMI SYARIF, AKBAR RISMAWAN TANJUNG, RICO ANDRIAN, FAVORISEN R. LUMBANRAJA

Abstract


Tapis Fabric is a traditional clothing of the people of Lampung in the form of a shawl cloth or a sarong made of woven cotton thread with various motifs and ornaments, silver thread or gold thread by embroidered or punched. The pattern of filter cloth is quite complex, unlike the pattern of fabric in general, with its own uniqueness that has become the culture of Lampung society until now. This filter cloth will be investigated by identifying the three types of filter cloth, namely Sasab, Bintang Perak and Gunung Beradu and see the results of its identification. The method used to identify is by combining the Gabor Filter feature extraction method which has frequency and orientation parameters and Probability Neural Network classification methods. Previously, the combination of these two methods was used to identify objects with simple patterns. The results are quite good, such as detecting faces, leaf patterns, and other simple patterns. This research is expected to get maximum identification results on the filter cloth even though it has a pattern that is not simple and will be used as a research report to determine the suitability of the method used for the filter object.

Keywords


Kain Tapis; Lampung; Gabor Filter; Image Processing; Probability Neural Network

Article Metrics

Abstract view : 286 times
PDF - 478 times

Full Text:

PDF

References


N. D. Ariani dan K. Roisah, “Upaya Pemerintah Dalam Melindungi Kain Tapis dan Siger Lampung Sebagai Ekspresi Budaya Tradisional,” Journal Law Reform, FH Universitas Diponegoro, Vol. 12, No. 1, pp. 73–86, 2016.

V. N. Sagita, “Kain Tapis Sebagai Simbol Kekhasan Lampung,” Journal Stipram Yogyakarta, Vol. 1, No. 1, pp. 1–10, 2018.

S. Susiana, “Motif Kain Tapis Pada Kerajinan Tradisional Adat Lampung dalam Perspektif Etnomatematika Sebagai Kekayaan Matematika dan Budaya,” Universitas Islam Negri Raden Intan Lampung, 2017.

R. A. Rosanta dan R. E. Rizkiantono, “Perancangan Buku Visual Tapis Lampung sebagai Media Pelestarian Tapis,” Jurnal Desain IDEA Institut Teknologi Sepuluh Nopember Surabaya, Vol. 17, No. 1, pp. 5-10, 2018.

A. R. Putri, “Pengolahan Citra dengan Menggunakan WEB CAM pada Kendaraan Bergerak di Jalan Raya,” Jurnal Ilmiah Penelitian dan Pembelajaran Informatika (JIPI), Vol. 1, No. 01, pp. 1–6, 2016.

S. R. Sulistyanti, F. A. Setyawan, dan M. Komarudin, Pengolahan Citra Digital dan Contoh Penerapannya, Edisi Pertama. Yogyakarta: Teknosain, 2016.

A. Wijayono dan V. Putra, Penerapan Teknologi Pengolah Citra Digital dan Komputasi Pada Pengukuran dan Pengujian Berbagai Parameter Benang, Vol. 1. CV Mulia Jaya, 2017.

D. Gabor, “Theory of Communication,” Journal of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering, Vol. 93, No. 26, pp. 429–441, 1946.

Y. Wicaksono dan R. Wahono, “Color and Texture Feature Extraction Using Gabor Filter - Local Binary Patterns for Image Segmentation with Fuzzy C-Means,” Journal of Intelligent Systems, Vol. 1, No. 1, pp. 15–21, 2015.

R. Lim, “Verifikasi Personal Berdasarkan Citra Tangan dengan Metode Filter Gabor,” Petra International Journal of Business Studies (IJBS), Vol. 1, pp. 1–10, 2004.

L. Leonardo, “Penerapan Metode Filter Gabor Untuk Analisis Fitur Tekstur Citra Pada Kain Songket,” Jurnal Sistem Komputer dan Informatika (JSON), Vol. 1, No. 2, pp. 120-124, 2020.

L. Bai dan L. Shen, “A fast and Robust Gabor Feature Based Method for Face Recognition,” in IEE International Symposium on Imaging for Crime Detection and Prevention (ICDP), 2005, pp. 95–98.

J. Jing, X. Fan, dan P. Li, “Automated fabric defect detection based on multiple Gabor filters and KPCA,” International Journal of Multimedia and Ubiquitous Engineering, Vol. 11, No. 6, pp. 93–106, 2016.

B. Kurniawan, R. M, dan M. Nasrun, “Implementasi Metode Gabor Dan Jaringan Syaraf Tiruan Pada Sistem Pengenalan Wajah,” e-Proceedings of Engineering, Vol. 2, No. 2, 2015.

D. F. Specht, “Probabilistic Neural Networks,” Neural Networks, Vol. 3, No. 1, pp. 109–118, 1990.

Y. Herdiyeni, “Mobile Application for Indonesian Medicinal Plants Identification Using Fuzzy Local Binary Pattern and Fuzzy Color Histogram,” Proceeding of International Conference on Advanced Computer Science and Information Systems (ICACSIS), Vol. 1, 2012.

H. Suhartanto dan Herry, “Algoritma Parallel Supervised PNN Structure Determination dan Implementasi Berbasis Message Passing Interface,” Jurnal Ilmu Komputer dan Informasi Fakultas Ilmu Komputer Universitas Indonesia, Vol. 2, No. 1, p. 10, 2009.

I. M. M. El Emary dan S. Ramakrishnan, “On The Application of Various Probabilistic Neural Networks in Solving Different Pattern Classification Problems,” World Applied Sciences Journal, Vol. 4, No. 6, pp. 772–780, 2008.

A. Hasnat, A. Ghosh, A. Khatun, dan S. Halder, “Pattern Classification of Fabric Defects Using A Probabilistic Neural Network and Its Hardware Implementation Using The Field Programmable Gate Array System,” Fibres and Textiles in Eastern Europe, Vol. 25, No. 1, pp. 42–48, 2017.

M. E. Abdulmunem dan F. B. Ibrahim, “Design of an Efficient Face Recognition Algorithm Based on Hybrid Method of Eigen Faces and Gabor Filter,” IRAQI Academic Scientific Journals, Vol. 57, No. 3, pp. 2102–2110, 2016.




DOI: http://dx.doi.org/10.23960%2Fkomputasi.v8i2.2641

Refbacks

  • There are currently no refbacks.


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.