Rancang Bangun Alat Pengukur Suhu Real Time Laboratorium menggunakan Protokol MQTT Berbasis Internet of Things

Indrawata Wardhana, Vandri Ahmad Isnaini, Rahmi Putri Wirman, Rita Syafitri, Akhmad nasuha

Abstract


The stable temperature in the laboratories is the major requirement for ensuring safety at work. The changes in the temperature which are oftentimes caused by precisely unrecognized factor may provide hazardous impacts on humans who are working in such place. Similar researches were conducted; however, they did not use NodeMCU as a microcontroller and MQTT protocol. This study tried to build a real-time temperature observation system using MQTT protocol based on the Internet of Things which has a fast delivery speed message. The temperature and humidity were captured by using DHT22 sensor that were then stored in database for one month. The result showed that the temperature change of the laboratory could be rapidly detected through the tests process on a certain heat-produced device. It could be analyzed periodically using the real-time application so that the impact of temperature rise could be detected quickly.


Keywords


Database, Internet of Things (IoT), MQTT, NodeMCU, Sensor DHT 22

Article Metrics

Abstract view : 167 times
PDF - 312 times

Full Text:

PDF

References


E. Mintarto and M. Fattahilah, “EFEK SUHU LINGKUNGAN TERHADAP FISIOLOGI TUBUH PADA SAAT MELAKUKAN LATIHAN OLAHRAGA Edy,” J. Sport Exerc. Sci., vol. 2, no. 1, pp. 9–13, 2019.

L. Aosong ELectronics Co, “Dht22 (Am2302),” vol. 22, pp. 1–10, 2015.

A. M. Utc, “Teploměr a vlhkoměr DHT11 a DHT22 | Arduino návody,” pp. 1–16, 2019.

M. Bogdan, “How to Use the DHT22 Sensor for Measuring Temperature and Humidity with the Arduino Board,” ACTA Univ. Cibiniensis, vol. 68, no. 1, pp. 22–25, 2017.

F. Puspasari, I. Fahrurrozi, U. Y. Oktiawati, and T. P. Satya, “Development of embedded system in monitoring temperature and humidity as supporting smart farm,” J. Phys. Conf. Ser., vol. 1511, no. 1, 2020.

I. Vandri Ahmad Isnadi and R. P. W. Wardhana, “Index Yang Terintegrasi Dengan Pengukuran Faktor-Faktor Cuaca Secara Real Time,” J. Ilm Fis., vol. 7, no. 2, pp. 63–68, 2015.

Y. Findawati, A. Idris, Suprianto, Y. Rachmawati, and E. A. Suprayitno, “IoT-Based Smart Home Controller Using NodeMCU Lua V3 Microcontroller and Telegram Chat Application,” IOP Conf. Ser. Mater. Sci. Eng., vol. 874, no. 1, 2020.

R. Reserved, “ESP12-F datasheet,” pp. 1–2, 2018.

K. K. Patel, S. M. Patel, and P. G. Scholar, “Internet of Things-IOT: Definition, Characteristics, Architecture, Enabling Technologies, Application & Future Challenges,” Int. J. Eng. Sci. Comput., vol. 6, no. 5, pp. 1–10, 2016.

F. Salfner, “Predicting Failures with Hidden Markov Models.”

J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and P. Manzoni, “Improving MQTT Data Delivery in Mobile Scenarios: Results from a Realistic Testbed,” Mob. Inf. Syst., vol. 2016, 2016.

T. Budioko, “Sistem Monitoring Suhu Jarak Jauh Berbasis Internet Of Things Menggunakan Protokol MQTT,” Semin. Ris. Teknol. Inf. tahun, pp. 353–358, 2016.

S. A. Indrawata Wardhana, “Perancangan dan Penerapan Arsitektur Cloud Storage Pada Iain STS Jambi,” Manaj. Sist. Inf., vol. 2, no. 1, pp. 244–259, 2017.

M. P. Clark, “Quality of Service (QOS), Network Performance and Optimisation,” in Data Networks, IP and the Internet, John Wiley & Sons, Ltd, 2003, pp. 565–610.

J. Fisika and F. Universitas, “KELEMBABAN RELATIF PADA RUANGAN DENGAN Herlina Nainggolan , Meqorry Yusfi,” Kelembaban Relat., vol. 2, no. 3, pp. 140–147, 2013.




DOI: http://dx.doi.org/10.23960%2Fjtaf.v9i1.2690

This work is licensed under a This work is licensed under a Creative Commons Attribution 4.0 International License.