Pengaruh Penambahan Silika (SiO2) Sekam Padi Terhadap Karakteristik Mikrostruktur dan Struktur Aspal dengan Perbandingan Massa 1:0 ; 1:1,5 ; 1:1,6 dan 1:1,7

Letia Oktri Diana, Simon Sembiring, Rudi T.M Situmeang


Synthesis and characterization of silica rice husk blend asphalt was carried out with a mass ratio of 1;0; 1:1,5; 1:1,6 and 1:1,7 respectively. Rice husk was prepared by sol-gel method as a raw material of silica. Asphalt and silica is mixed by using the solid-sate method, which is heated with a temperature of 110 oC for 4 hours. This study was revealed to investigate the effect of the addition of silica from rice husk on microstructure and asphalt structure. SEM results show the morphology of the asphalt surface without addition of silica which transforms elongated folds and after addition of silica shows uncertain granules more likely seems clusters with grain size (1:1,5 = 4,298 m, 1:1,6 = 3,103 m and 1:1,7 = 5,328 m) respectively. The XRD results show asphaltene amorphous phase in the asphalt sample with two peaks at 2= 18,90 and 2= 42. Furthermore, the addition of silica with asphalt able to modify two asphaltene peaks into carbon and silica amorphous peaks.


Asphalt, silica, rice husk, asphaltene, sol gel.

Full Text:



J. Read and D. Whiteoak, The Shell bitumen handbook. 2003.

S. Sukirman, “Perkerasan Lentur Jalan Raya,” Nova, 1999.

H. K. Lindberg et al., “Genotoxic effects of fumes from asphalt modified with waste plastic and tall oil pitch,” Mutat. Res. - Genet. Toxicol. Environ. Mutagen., 2008.

C. Ouyang, S. Wang, and Y. Zhang, “Dennsity Polyethylene/Silica Compound Modified Asphalts with High Temperature Storage Stability,” J. Appl. Polym. Sci., vol. 101, pp. 472–479, 2005.

S. Chandrasekhar, P. N. Pramada, P. Raghavan, K. G. Satyanarayana, and T. N. Gupta, “Microsilica from rice husk as a possible substitute for condensed silica fume for high performance concrete,” J. Mater. Sci. Lett., 2002.

I. A. Rahman and V. Padavettan, “Synthesis of Silica nanoparticles by Sol-Gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocompositesa review,” Journal of Nanomaterials. 2012.

W. Masrukan and Aditoiyanto, “No Title,” in Prosiding Seminar Nasional Hamburan Newton dan Sinar-X, 1999, pp. 79–82.

X. Shi, L. Cai, W. Xu, J. Fan, and X. Wang, “Effects of nano-silica and rock asphalt on rheological properties of modified bitumen,” Constr. Build. Mater., 2018.

H. Yao et al., “Properties and Chemical Bonding of Asphalt and Asphalt Mixtures Modifiedwith Nanosilica,” J. Mater. Civ. Eng., vol. 6, no. 1, pp. 1–45, 2012.

S. W., S. Sembiring, and S. K, “Effect of Pyrolysis Temperatures on Composition and ElectricalConductivity of Carbosil Prepared From Rice Husk,” Indones. J. Chem., vol. 12, no. 2, pp. 119–125, 2012.

Z. You et al., “Nanoclay-modified asphalt materials: Preparation and characterization,” Constr. Build. Mater., 2011.

M. D. Nazzal, S. Kaya, T. Gunay, and P. Ahmedzade, “Fundamental Characterization of Asphalt Clay Nanocomposites,” J. Nanomechanics Micromechanics, 2012.

M. S. Cortizo, D. O. Larsen, H. Bianchetto, and J. L. Alessandrini, “Effect of the thermal degradation of SBS copolymers during the ageing of modified asphalts,” Polym. Degrad. Stab., 2004.

N. Nciri, J. Kim, N. Kim, and N. Cho, “An in-depth investigation into the physicochemical, thermal, microstructural, and rheological properties of petroleum and natural asphalts,” Materials (Basel)., 2016.

R. Permana and Imam, “Studi Sifat-Sifat Reologi Aspal yang

Dimodifikasi Limbah Tas Plastik,” in Simposium XII FSTPT, 2009, pp. 26–37.

H. Ezzat, S. El-Badawy, A. Gabr, E. S. I. Zaki, and T. Breakah, “Evaluation of Asphalt Binders Modified with Nanoclay and Nanosilica,” in Procedia Engineering, 2016.


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.