Pengaruh Waktu Elektroplating Terhadap Laju Korosi Baja AISI 1020 Dalam Medium Korosif NaCl 3%

Aisiyah Putri Sandi, Ediman Ginting Suka, Yayat Iman Supriyatna

Abstract


The influence of electroplating time Zn-Mn to corrosion rate of AISI 1020 steel in corrosive medium NaCl 3% had been researching. This research used time variation 10, 20, 30, 40, and 50 seconds. Corrosion rate testing is done by soaking the steel for 168 hours in corrosive medium NaCl and calculated with the loss of steel weight. The result showed that the longer electroplating time that used, caused the increasing of mass and Zn-Mn content of steel. It can make the corrosion rate will be decreased. The lowest corrosion rate obtained at 50 seconds electroplating time and 60 mA/cm2 current density is 0,059 mmpy. XRD characterization of steel without electroplating after corrosion rate testing showed the changing of phase from iron into oxide phase magnetite (Fe3O4). The analyze of metallurgical microscope showed the better layer with the increasing time, whereas after corrosion rate testing the steel surface were cracks.

Keywords


AISI 1020 steel, Electroplating Zn-Mn, NaCl 3%

Full Text:

PDF

References


H. Supriadi, “Studi Eksperimental Tentang Pengaruh Variasi Rapat Arus pada Hard Chrome Electroplating Terhadap Karakterisasi Permukaan Baja Karbon Rendah,” J. Mech., vol. Vol.1, p. Hal. 1-6, 2010.

Irwanto, “Pengaruh Jarak Anoda-Katoda dan Pemerata Arus terhadap Ketebalan Lapisan dan Efisiensi Katoda pada Elektroplating Tembaga Asam untuk Baja Karbon Sedang,” Skripsi, vol. Universita, p. Bandar Lampung, 2010.

M. E. El-Giar, R. A. Said, G. E. Bridges, and D. J. Thomson, “Localized Electrochemical Deposition of Copper Microstructures,” J. Electrochem. Soc., vol. Vol 147, no. No 2, p. Pp 586-591, 2000.

J. Gong and G. Zangari, “Electrodeposition and Characterization of Manganese Coatings,” J. Electrochem. Soc., vol. Vol 149, p. Pp 209-217, 2002.

N. Boshkov, “Galvanic Zn-Mn alloys - Electrodeposition, Phase Composition, Corrosion Behaviour and Protective Ability,” J. Surf. Coatings Technol., vol. Vol 172, no. No 2-3, p. Pp 217-226, 2003.

J. I. E. Gong, G. Wei, J. A. Barnard, and G. Zangari, “Electrodeposition and Characterization of Sacrificial Copper-Manganese Alloy Coatings,” J. Metall. Mater. Trans., vol. Vol 36, p. Pp 2705-2715, 2005.

P. A. Diaz, Z. I. Ortiz, H. Ruiz, R. Ortega, Y. Meas, and G. Trejo, “Electrodeposition and Characterization of Zn – Mn Alloy Coatings Obtained from a Chloride-Based Acidic Bath Containing Ammonium Thiocyanate as an Additive,” J. Surf. Coatings Technol., vol. Vol 203, p. Pp 1167-1175, 2009.

S. Ganesan, G. Prabhu, and B. N. Popov, “Electrodeposition and Characterization of Zn ‐ Mn Coatings for Corrosion Protection,” J. Surf. Coatings Technol., vol. Vol 238, p. Pp 143-151, 2014.

M. Bučko, J. Rogan, S. I. Stevanović, A. Perić-Grujić, and J. B. Bajat, “Initial Corrosion Protection of Zn-Mn Alloys Electrodeposited From Alkaline Solution,” Corros. Sci., vol. Vol 53, no. No 9, p. Pp 2861-2871, 2011.




DOI: http://dx.doi.org/10.23960%2Fjtaf.v5i2.1816

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.