Desain dan Realisasi Akumulator Elektrolit Air Laut Dengan Penambahan Sodium Bicarbonate (NaHCO3) Sebagai Sumber Energi Alternatif

Randha Kentama Arwaditha, Gurum Ahmad Pauzi, Amir Supriyanto

Abstract


It has been done an instrument of generating electric power by using a series of Cu-Zn electrode with sea water electrolyte and with the addition of NaHCO3. The instrument was desined to charging and discharged sea water electrolyte that can be used as a sustainable alternative energy source. The first instrument with sea water electrolyte was tested in 78 hours with three times electrolyte charging every 24 hours.Voltage, Current, Power, and Illumination were generated by an instrument with sea water electrolyte, the longer used will be smaller and can only turn the LEDs of 1.2 watts for 3 days. While the sea water with electrolytes added NaHCO3, the longer used will be smaller too, and they can turn on the LED 1.2 watts to 5 days. Corrosion rate with the longer electrolytic sea water used will be higher, while the sea water with electrolytes added NaHCO3 no corrosion Occurs.

Keywords


Electrodes, sea water, sodium bicarbonate

Full Text:

PDF

References


Kementrian Energi dan Sumber Daya Mineral, “Materi Paparan Kementrian Energi dan Sumber Daya Mineral Rapat Koordinasi Infrastruktur Ketenagalistrikan,” Jakarta, 2015.

V. Ş. Ediger and E. Kentel, “Renewable Energy Potential as an Alternative to Fossil Fuels in Turkey,” Energy Convers. Manag., pp. 743–755, 1999.

R. Güell, G. Aragay, C. Fontàs, E. Anticó, and A. Merkoçi, “Sensitive and Stable Monitoring of Lead and Cadmium in Seawater Using Screen-Printed Electrode and Electrochemical Stripping Analysis,” Anal. Chim. Acta, pp. 219–224, 2008.

M. Zainuri, K. Anam, and A. P. Susanti, “Hubungan Kandungan Natrium Chlorida (NaCl) dan Magnesium (Mg) dari Garam Rakyat di Pulau Madura,” in Prosiding Seminar Nasional Kelautan, 2016, pp. 167–172.

J. P. . R. C. Riley, Chemical Oceanography, vol. 6, no. 4. San Francisco, 1976.

E. Hudaya, “Analisis Karakteristik Elektrik Air Laut Sebagai Sumber Energi Listrik Terbarukan,” Universitas Lampung, 2016.

E. Marlina, S. Wahyudi, and L. Yuliati, “Produksi Brown Gas Hasil Elektrolisis H2O dengan Katalis NaHCO3,” J. Rekayasa Mesin, vol. 4, no. 1, pp. 53–58, 2013.

N. N. Leyzerovich, K. G. Bramnik, T. Buhrmester, H. Ehrenberg, and H. Fuess, “Electrochemical Intercalation of Lithium in Ternary Metal Molybdates MMoO4 (M: Cu, Zn, Ni and Fe),” J. Power Sources, vol. 127, pp. 76–84, 2004.

M. S. Silberberg, Chemistry: The Molecular Nature of Matter and Change, 2nd ed. New York: Academic Press Inc. Ltd, 2003.

J. Anggono, S. Tjitro, and V. R. Palapessy, “Studi Perbandingan Kinerja Anoda Korban Paduan Aluminium dengan Paduan Seng dalam Lingkungan Air Laut,” J. Tek. Mesin, vol. 1, no. 2, pp. 89–99, 1999.




DOI: http://dx.doi.org/10.23960%2Fjtaf.v5i2.1809

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.